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 a b s t r a c t

This article presents a dual flexible performance-preset boundary (DFPPB)-based fuzzy control 
approach for input-saturated stochastic high-order nonlinear systems. Distinct from most of the 
existing prescribed performance control approaches, the initial PPB of which remains bounded 
and fixed, meaning that they can only suit for nonlinear systems where the initial error informa-
tion is completely known. By designing a rate function-based PPB, the proposed algorithm can be 
used in many cases where the initial error information is completely known, partially known and 
completely unknown without changing the control structure. In addition, by designing an auxil-
iary system and embedding its output into PPB, and a novel DFPPB and a tensile model-based bar-
rier function are constructed, so that the proposed algorithm achieves autonomous coordination 
between performance preset and input security. Furthermore, the unknown nonlinear functions 
are approached by the fuzzy logic systems, and the results show that the designed DFPPB-based 
fuzzy control algorithm guarantees that all closed-loop signals remain semi-globally bounded in 
probability; the system output is capable of effectively tracking the desired signal, while the track-
ing error is consistently kept within the DFPPB. The developed algorithm is illustrated by means 
of simulation instances.

1.  Introduction

It is well known that stochastic disturbances are unavoidable in real systems, so the control of stochastic systems has garnered 
considerable attention, and many innovative control algorithms were proposed, see [1–5] and their references. Note that earlier 
algorithms mainly focused on general stochastic feedback nonlinear systems, as a class of stochastic systems with more general 
structure and non-feedback linearization, stochastic high-order nonlinear systems (SHONSs) can describe the dynamic characteristics 
of complex systems more accurately, and the control of SHONSs has become a research focus in the control field. Just name a list, 
an output tracking control of SHONSs with application to benchmark mechanical system was presented in [6]. An adaptive state-
feedback stabilization of SHONSs with stochastic inverse dynamics and time-varying powers was proposed in [7]. Min et al. [8] 
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\begin {equation}\label {eq.1} \begin {cases} \mathrm {d}{x}_i = \left (f_i\left (\boldsymbol {\bar {x}}_i\right ) + x_{i+1}^{p_i}\right )\mathrm {d}t + \boldsymbol {\hbar }_i^{\textup {T}} \left (\boldsymbol {\bar {x}}_i\right )\mathrm {d}w, \\ \mathrm {d}{x}_n = \left (f_n\left (\boldsymbol {\bar {x}}_n\right ) + \textup {S}^{p_n}\left (v\right )\right )\mathrm {d}t + \boldsymbol {\hbar }_n^{\textnormal {T}} \left (\boldsymbol {\bar {x}}_n\right )\mathrm {d}w, \\ y = x_1 \end {cases}\end {equation}


$i=1,2,\cdots ,n-1$


$\boldsymbol {\bar {x}}_i=\left [x_1,\cdots ,x_i\right ]^{\rm T}$


$v$


$y$


$\textup {S}\left (v\right )$


$\boldsymbol {\hbar }_i\left (\cdot \right )$


$f_i\left (\cdot \right )$


$w\in \mathbf {R}^r$


$p_i\in \mathbf {R}_{odd}^{\ge 1}=\big \{p\ge 1\big |p=q_1/q_2\big \}$


$q_j\in \boldsymbol {R}^+ \left (j=1,2\right )$


$i=1,2,\cdots ,n$


\begin {equation}\textup {S}\left (v\right )= \begin {cases} v, & |v| \leq \bar {v} \\ \operatorname {sign}(v)\bar {v}, & |v|>\bar {v}\\ \end {cases} \label {eq.2}\end {equation}


$\bar {v}$


$\textup {S}\left (v\right )$


\begin {equation}\label {eq.3} \textup {S}\left (v\right ) = k_1\left (v\right )+k_2\left (v\right )\end {equation}


$k_1\left (v\right )=\bar {v}\tanh \left (v/\bar {v}\right ), k_2\left (v\right )=\textup {S}\left (v\right )-k_1\left (v\right )$


$|k_2\left (v\right )|\leq \bar {v}\left (1-\tanh \left (1\right )\right )=\bar k$


$\forall v_0\in \boldsymbol {R}$


\begin {equation}\label {eq.4} k'_1\left (v_1\right )=\frac {k_1\left (v\right )-k_1\left (v_0\right )}{v-v_0}\end {equation}


$v_1=v_0+\lambda \left (v-v_0\right )$


$\lambda \in \left (0,1\right )$


$k_0=k_1'\left (v_1\right )$


$k_1\left (v\right )$


$0<\underline {k}\le k_0^{p_n}<1$


$\underline {k}$


$v_0=0$


\begin {equation}\label {eq.5} \textup {S}\left (v\right ) =k_0v+k_2\left (v\right ).\end {equation}


\begin {equation}\label {eq.6} \textup {S}^{p_n}\left (v\right ) = k_0^{p_n}v^{p_n}+K\left (v\right )\end {equation}


$K\left (v\right )=\left (k_0v+k_2\left (v\right )\right )^{p_n}-\left (k_0v\right )^{p_n}$


$K\left (v\right )\to 0$


$v\to \infty $


$K\left (v\right )$


$\exists \bar {K}>0$


$K\left (v\right )\le \bar {K}$


\begin {equation}\label {eq.7} \mathrm {d}{x} = f\left (x\right )\mathrm {d}t + \hbar \left (x\right )\mathrm {d}w,\end {equation}


$V(x)$


$\boldsymbol {C}^2$


$\mathscr {L}$


$V\left (x\right )$


\begin {equation}\label {eq.8} \mathscr {L}V\left (x\right ) = \frac {\partial V\left (x\right )}{\partial {x}} f\left (x\right ) + \frac {1}{2} \text {Tr} \left (\hbar ^{\textup {T}}\left (x\right ) \frac {\partial ^2 V\left (x\right )}{\partial {x}^2} \hbar \left (x\right )\right )\end {equation}


$\text {Tr}\left (\cdot \right )$


$\cdot $


$\boldsymbol {C}^2$


$V\left (\boldsymbol {x}\right )$


$\boldsymbol {R}^n \to \boldsymbol {R}^+$


$\aleph _1\left (\cdot \right ),\aleph _2\left (\cdot \right ) \in \boldsymbol {\mathcal {K}}_{\infty }$


$c,d\in \boldsymbol {R}^+$


\begin {equation}\begin {cases} \aleph _1\left (||\boldsymbol {x}||\right )\leq V\left (\boldsymbol {x}\right )\leq \aleph _2\left (||\boldsymbol {x}||\right ),\\ \mathscr {L} V\left (\boldsymbol {x}\right )\leq -cV\left (\boldsymbol {x}\right )+d \nonumber \end {cases}\end {equation}


\begin {equation}\label {eq.9} \mathbb {E}\left (V\right ) \leq V\left (\boldsymbol {0}\right )\exp \left (-ct\right )+\frac {d}{c}\end {equation}


$\mathbb {E}\left (\cdot \right )$


$\cdot $


$\bar {f}\left (\boldsymbol {\mathcal {X}}\right )$


\begin {equation}\label {eq.10} \bar {f}\left (\boldsymbol {\mathcal {X}}\right )=\boldsymbol {\Upsilon }^{\textup {T}}\boldsymbol {\Psi }\left (\boldsymbol {\mathcal {X}}\right )+\epsilon \left (\boldsymbol {\mathcal {X}}\right ),\quad \left (|\epsilon \left (\boldsymbol {\mathcal {X}}\right )|\le \epsilon , \epsilon \in \boldsymbol {R}^+\right )\end {equation}


$\boldsymbol {\mathcal {X}},\boldsymbol {\Upsilon },\boldsymbol {\Psi }\left (\boldsymbol {\mathcal {X}}\right ),\epsilon \left (\boldsymbol {\mathcal {X}}\right )$


$\boldsymbol {\Psi }\left (\boldsymbol {\mathcal {X}}\right )=\left [\Psi _1\left (\boldsymbol {\mathcal {X}}\right ),\cdots ,\Psi _m\left (\boldsymbol {\mathcal {X}}\right )\right ]^{\textup {T}}/\sum _{i=1}^{m}\Psi _i\left (\boldsymbol {\mathcal {X}}\right )$


$m>1$


$\Psi _i\left (\boldsymbol {\mathcal {X}}\right )$


$\Psi _i\left (\boldsymbol {\mathcal {X}}\right )=\exp \left (-\left (\boldsymbol {\mathcal {X}}-\boldsymbol {\iota }_i\right )^{\rm T}\left (\boldsymbol {\mathcal {X}}-\boldsymbol {\iota }_i\right )/{\varsigma _i}^2\right ),i=1,\cdots ,m$


$\varsigma _i$


$\boldsymbol {\iota }_i$


$\Psi _i\left (\boldsymbol {\mathcal {X}}\right )$


$r\in \boldsymbol {R}_{odd}^{\ge 1}$


$x, y\in \boldsymbol {R}$


$\imath , \jmath ,\gamma ,a\in \boldsymbol {R}^+$


\begin {align}\left |x^r-y^r\right |&\leq r(2^{r-2}+2)\left |x-y\right |\left (\left |x-y\right |^{r-1}+y^{r-1}\right ),\label {eq.11}\\ a|x|^\imath |y|^\jmath &\leq \frac {\gamma \imath }{\imath +\jmath }|x|^{\imath +\jmath }+\frac {\jmath a^{\frac {\imath +\jmath }{\jmath }}}{\imath +\jmath }\gamma ^{-\frac {\imath }{\jmath }}|y|^{\imath +\jmath }.\label {eq.12}\end {align}


$\imath \ge 0,\jmath >0$


$\gamma \ge 1$


\begin {align}\label {eq.13} \imath \le \jmath +\left (\frac {\imath }{\gamma }\right )^{\gamma }\left (\frac {\gamma -1}{\jmath }\right )^{\gamma -1}.\end {align}


\begin {align}\label {eq.14} \mathscr {H}\left (\Gamma \left (t\right )\right )=\frac {\ell \Gamma \left (t\right )}{\sqrt {1 - \Gamma ^2\left (t\right )}}\end {align}


$\Gamma \left (t\right )=\left (\Gamma _0 - \Gamma _{\textup {T}}\right )\zeta \left (t\right )+\Gamma _{\textup {T}}$


$\ell ,\Gamma _{\textup {T}},\Gamma _0$


$0 < \Gamma _{\textup {T}} < \Gamma _0\leq 1$


$\ell >0$


$\zeta (t)$


$\zeta \left (0\right )= 1$


$\zeta \left (t\right )\in \left [0,1\right ),\forall t>0$


$\zeta ^{\left (i\right )}\left (t\right )$


$i =0,\cdots ,n$


$\zeta \left (t\right )$


\begin {align}\label {eq.15} \zeta \left (t\right ) = \begin {cases} \left (\frac {\textup {T}-t}{\textup {T}}\right )^{n+1} , & 0 \leq t < \textup {T} \\ 0 , & t\geq \textup {T}\\ \end {cases}\end {align}


$\textup {T}$


$n$


\begin {align}\label {eq.16} s=\frac {\beta \left (t\right )}{\left (\vartheta _1+\beta \left (t\right )\right )\left (\vartheta _2-\beta \left (t\right )\right )}\end {align}


$\vartheta _1,\vartheta _2\in \left (0,1\right ],\beta \left (t\right )=\eta \left (t\right )/\Gamma \left (t\right )$


$\eta \left (t\right )=M\left (\sigma \right )e_1/\sqrt {M^2\left (\sigma \right )e_1^2+\ell ^2}$


$e_1=x_1-y_r$


$y_r$


$M\left (\sigma \right )=\exp \left (-\tau \sigma \right )$


$\tau \in \boldsymbol {R}^+$


$\sigma $


\begin {align}\label {eq.17} \dot {\sigma }=-\rho _1\sigma +\rho _2\left (b_1\left (t\right )+b_2\left (t\right )\right ),\sigma \left (0\right )=0\end {align}


$\rho _1,\rho _2\in \boldsymbol {R}^+$


$b_1\left (t\right )=\left ( \operatorname {sign}{v-\bar {v}}+1\right )\left (v-\bar {v}\right )$


$b_2\left (t\right )=\left ( \operatorname {sign}{v+\bar {v}}-1\right )\left (v+\bar {v}\right )$


$b_1\left (t\right )$


$b_2\left (t\right )$


$b_1\left (t\right )+b_2\left (t\right )\equiv 0$


$|v|\le \bar {v}$


$|v|>\bar {v}$


$b_1\left (t\right )+b_2\left (t\right )>0$


$\sigma =0$


$|v|\le \bar {v}$


$\sigma >0$


$|v|>\bar {v}$


$M\left (\cdot \right )$


$M\left (\sigma \right )\in \left (0,1\right ]$


$M\left (\sigma \right )=1$


$|v|\le \bar {v}$


$\left (\underline {\mathcal {G}}\left (t\right ),\bar {\mathcal {G}}\left (t\right )\right )$


\begin {equation}\label {eq.18} \begin {cases} \underline {\mathcal {G}}\left (t\right )=\frac {\mathscr {H}\left (-\vartheta _1\Gamma \left (t\right )\right )}{M\left (\sigma \right )},\\ \bar {\mathcal {G}}\left (t\right )=\frac {\mathscr {H}\left (\vartheta _2\Gamma \left (t\right )\right )}{M\left (\sigma \right )} \end {cases}\end {equation}


\begin {equation}\label {eq.19} \begin {cases} \mathscr {H}\left (-\vartheta _1\Gamma \left (t\right )\right )=\frac {-\ell \vartheta _1\Gamma \left (t\right )}{\sqrt {1 -\left (\vartheta _1\Gamma \left (t\right )\right )^2}},\\ \mathscr {H}\left (\vartheta _2\Gamma \left (t\right )\right )=\frac {\ell \vartheta _2\Gamma \left (t\right )}{\sqrt {1 - \left (\vartheta _2\Gamma \left (t\right )\right )^2}}. \end {cases}\end {equation}


$\beta \left (0\right )\in \left (-\vartheta _1,\vartheta _2\right )$


$s$


$\beta \left (t\right )\in \left (-\vartheta _1,\vartheta _2\right )$


$\forall t\in \boldsymbol {R}^+$


$\beta \left (t\right )$


$\beta \left (t\right )\in \left (-\vartheta _1,\vartheta _2\right )$


$\eta \left (t\right )\in \left (-\vartheta _1\Gamma \left (t\right ),\vartheta _2\Gamma \left (t\right )\right )$


$\mathscr {H}\left (\cdot \right )$


$\cdot $


$\eta \left (t\right )\in \left (-\vartheta _1\Gamma \left (t\right ),\vartheta _2\Gamma \left (t\right )\right )$


\begin {align}\label {eq.20} \mathscr {H}\left (-\vartheta _1\Gamma \left (t\right )\right )<\mathscr {H}\left (\eta \left (t\right )\right )<\mathscr {H}\left (\vartheta _2\Gamma \left (t\right )\right ).\end {align}


\begin {align}\label {eq.21} \mathscr {H}\left (-\vartheta _1\Gamma \left (t\right )\right )<M\left (\sigma \right )e_1<\mathscr {H}\left (\vartheta _2\Gamma \left (t\right )\right ).\end {align}


$e_1\left (0\right )\in \left (\underline {\mathcal {G}}\left (0\right ),\bar {\mathcal {G}}\left (0\right )\right )=\left (\mathscr {H}\left (-\vartheta _1\Gamma \left (0\right )\right ),\mathscr {H}\left (\vartheta _2\Gamma \left (0\right )\right )\right )$


$s$


$e_1\left (t\right )\in \left (\underline {\mathcal {G}}\left (t\right ),\bar {\mathcal {G}}\left (t\right )\right )$


$\forall t\in \boldsymbol {R}^+$


$s$


$M\left (\sigma \right )\equiv 1$


$\vartheta _1=\vartheta _2=\Gamma _0=1$


$\underline {\mathcal {G}}\left (0\right )\to -\infty $


$\bar {\mathcal {G}}\left (0\right )\to +\infty $


$e_1\left (0\right )\in \left (-\infty ,+\infty \right )$


$\vartheta _1=\vartheta _2=\Gamma _0=1$


$0<\vartheta _1,\vartheta _2,\Gamma _0<1$


$\vartheta _2=\Gamma _0=1,0<\vartheta _1<1$


$\vartheta _1=\Gamma _0=1,0<\vartheta _2<1$


$\vartheta _1,\vartheta _2,\Gamma _0\in \left (0,1\right )$


$\underline {\mathcal {G}}\left (0\right )=\mathscr {H}\left (-\vartheta _1\Gamma \left (0\right )\right )=\underline {\mathcal {G}}$


$\bar {\mathcal {G}}\left (0\right )$


$=\mathscr {H}\left (\vartheta _2\Gamma \left (0\right )\right )=\bar {\mathcal {G}}$


$\underline {\mathcal {G}}<0$


$\bar {\mathcal {G}}>0$


$e_1\left (0\right )\in \left (\underline {\mathcal {G}},\bar {\mathcal {G}}\right )$


$\vartheta _2=\Gamma _0=1,\vartheta _1\in \left (0,1\right )$


$\underline {\mathcal {G}}\left (0\right )=\mathscr {H}\left (-\vartheta _1\Gamma \left (0\right )\right )=\underline {\mathcal {G}}<0$


$\underline {\mathcal {G}}$


$\bar {\mathcal {G}}\left (0\right )\to +\infty $


$e_1\left (0\right )\in \left (\underline {\mathcal {G}},+\infty \right )$


$\operatorname {sign}{e_1\left (0\right )}=1$


$\vartheta _1=\Gamma _0=1,0<\vartheta _2<1$


$\bar {\mathcal {G}}\left (0\right )=\mathscr {H}\left (\vartheta _2\Gamma \left (0\right )\right )=\bar {\mathcal {G}}>0$


$\bar {\mathcal {G}}$


$\underline {\mathcal {G}}\left (0\right )\to -\infty $


$e_1\left (0\right )\in \left (-\infty ,\bar {\mathcal {G}}\right )$


$\operatorname {sign}{e_1\left (0\right )}=-1$


$M\left (\sigma \right )\in \left (0,1\right ]$


$M\left (\sigma \right )=1$


$|v|\le \bar {v}$


$|v|>\bar {v}$


$|v|\le \bar {v}$


\begin {align}\label {eq.22} \mathrm {d} {s}= \mu _1 \mathrm {d}e_1 + \mu _2 \mathrm {d}t\end {align}


\begin {align*}\mu _2=&\left (\left (\vartheta _1\vartheta _2+\beta ^2\right )e_1\left (\dot {M}-\eta Me_1\dot {M}-\dot {\Gamma }\eta \right )\right )/\left (\Gamma ^2\left (\vartheta _1+\beta \right )^2\left (\vartheta _2-\beta \right )^2\sqrt {M^2e_1^2+\ell ^2}\right ),\\ \mu _1=&\left (\left (\vartheta _1\vartheta _2+\beta ^2\right )M\ell ^2\right )/\left (\Gamma \left (\vartheta _1+\beta \right )^2\left (\vartheta _2-\beta \right )^2\left (M^2e_1^2+\ell ^2\right )\sqrt {M^2e_1^2+\ell ^2}\right )\end {align*}


$\beta =\beta \left (t\right )$


$M=M\left (\sigma \left (t\right )\right )$


$\eta =\eta \left (t\right )$


$\Gamma =\Gamma \left (t\right )$


$\varrho _1=s,\varrho _i=x_i-\alpha _{i-1}, i=2,\cdots ,n$


\begin {equation}\label {eq.24} \begin {cases} \mathrm {d}{\varrho }_1 =\mu _1 \left (F_1\left (x_1\right ) +x_2^{p_1}\right ) \mathrm {d}t + \boldsymbol {H}_1^{\textnormal {T}} dw,\\ \mathrm {d}{\varrho }_i =\left (F_i\left (\boldsymbol {\bar {x}}_i\right ) + x_{i+1}^{p_i}\right )\mathrm {d}t +\boldsymbol {H}_i^{\textnormal {T}} dw,\\ \mathrm {d}{\varrho }_n =\left (F_n\left (\boldsymbol {\bar {x}}_n\right ) +\textup {S}^{p_n}\left (v\right )\right )\mathrm {d}t + \boldsymbol {H}_n^{\textnormal {T}}dw \end {cases}\end {equation}


$F_1\left (x_1\right )=f_1\left (x_1\right )- \dot {y}_d + \mu _2 /\mu _1$


$F_i\left (\boldsymbol {\bar {x}}_i\right ) = f_i\left (\boldsymbol {\bar {x}}_i\right )- \mathscr {L}\alpha _{i-1}$


$i=2,\cdots ,n$


$\boldsymbol {H}_1^{\textnormal {T}} = \mu _1 \boldsymbol {\hbar }_1^{\textnormal {T}}\left (x_1\right )$


$\boldsymbol {H}_i = \hbar _i\left (\boldsymbol {\bar {x}}_i\right )-\sum _{j=1}^{i-1}\left (\partial {\alpha _{i-1}}/x_j\right )\hbar _j\left (\boldsymbol {\bar {x}}_j\right )$


$\alpha _i$


$\Theta _i=||\boldsymbol {\Upsilon }_i||^2,i=1,2,\cdots ,n$


$\boldsymbol {\Upsilon }_i$


$\tilde {\Theta }_i=\Theta _i-\hat {\Theta }_i$


$\hat {\Theta }_i$


$\Theta _i$


$p=\max \limits _{1\le i\le n}\{p_i\}$


$P_i=p-p_i+4$


$V_1$


\begin {equation}\label {eq.25} V_1=\frac {1}{P_1}\varrho _1^{P_1}+\frac {1}{2r_1}\tilde {\Theta }_1^2,\quad \left (r_1\in \boldsymbol {R}^+\right ).\end {equation}


\begin {align}\label {eq.26} \mathscr {L}V_1=& \varrho _1^{P_1-1}\mu _1\left (F_1\left (x_1\right ) +x_2^{p_1}\right )+\frac {P_1-1}{2}\varrho _1^{P_1-2}\|\boldsymbol {H}_1\|^2-\frac {1}{r_1}\tilde {\Theta }_1\dot {\hat {\Theta }}_1.\end {align}


\begin {equation}\label {eq.27} \varrho _1^{P_1 - 2} \|\boldsymbol {H}_1\|^2 \leq \frac {1}{2} \varrho _1^{2P_1 - 4} \|\boldsymbol {H}_1\|^4 + \frac {1}{2}.\end {equation}


\begin {align}\label {eq.28} \mathscr {L}V_1\leq &\mu _1 \varrho _1^{P_1-1}(x_{2}^{p_1}-\alpha _{1}^{p_1}) +\mu _1 \varrho _1^{P_1-1}\alpha _{1}^{p_1}+\varrho _1^{P_1-1}\bar {f}_1\left (\boldsymbol {\mathcal {X}}_1\right )\nonumber \\ & + \frac {P_1 - 1}{4}-\frac {\tilde {\Theta }_1 \dot {\hat {\Theta }}_1}{r_1}-\frac {P_1-1}{P_1}\varrho _1^{P_1}-\mu _1\Xi _1 \varrho _1^{p+3}\end {align}


$\bar {f}_1\left (\boldsymbol {\mathcal {X}}_1\right )=\mu _1 F_1\left (x_1\right )+\left (P_1 - 1\right )\varrho _1^{P_1-3}\|\boldsymbol {H}_1\|^4/4+\left (P_1 - 1\right )\varrho _1 /P_1 + \mu _1 \Xi _1 \varrho _1^{p_1}$


$\boldsymbol {\mathcal {X}}_1=\left [x_1,y_r\right ]^{\textup {T}}$


$\Xi _1$


$\bar {f}_i\left (\boldsymbol {\mathcal {X}}_i\right )$


$\bar {f}_i\left (\boldsymbol {\mathcal {X}}_i\right )=\epsilon _i\left (\boldsymbol {\mathcal {X}}_i\right )+\boldsymbol {\Upsilon }_i^{\textup {T}}\boldsymbol {\Psi }_i\left (\boldsymbol {\mathcal {X}}_i\right )$


$|\epsilon _i\left (\boldsymbol {\mathcal {X}}_i\right )|\leq \epsilon _i$


$\epsilon _i\in \boldsymbol {R}^+$


\begin {align}\varrho _1^{P_1-1}\bar {f}_1\left (\boldsymbol {\mathcal {X}}_1\right ) &\le \frac {|\varrho _1|^{P_1-1}\tilde {\Theta }_1||\boldsymbol {\Psi }_1\left (\boldsymbol {\mathcal {X}}_1\right )||^2}{4a_1}+\varrho _1^{p+3}\Phi _1+\frac {P_1-1}{P_1}\varrho _1^{P_1} +\frac {\epsilon _1^{P_1}}{P_1}+\varepsilon _1,\label {eq.29}\\ \varrho _1^{P_1-1}\left (x_2^{p_1}-\alpha _1^{p_1}\right )&\le \frac {p_1+1}{p+3} \varrho _2^{p+3}+\Xi _1 \varrho _1^{p+3}\label {eq.30}\end {align}


$a_1,\varepsilon _1\in \boldsymbol {R}^+$


$\Phi _1=\left [\left (P_1-1\right )\psi _1/\left (p+3\right )\right ]^{\left (p+3\right )/\left (P_1-1\right )}\left [p_1/\left (P_1-1\right )\varepsilon _1\right ]^{p_1/\left (P_1-1\right )}$


$\psi _1=\sqrt {1+\hat {\Theta }_1^2}||\boldsymbol {\Psi }_1\left (\boldsymbol {\mathcal {X}}_1\right )||^2 /4a_1+a_1$


$\Xi _1=\left (\left (P_1-1\right )\xi _1^{\left (p+3\right )/\left (P_1 - 1\right )}+\left (p+2\right )\left (\xi _1|\Omega _1|^{p_1-1}\right )^{\left (p+3\right )/\left (p+2\right )}\right )/\left (p+3\right )$


$\xi _1=p_1\left (2^{p_1-2}+2\right )$


$\Omega _1$


$\alpha _1$


$\dot {\hat {\Theta }}_1$


\begin {align}\alpha _1&\triangleq -\Omega _1\varrho _1,\label {eq.31}\\ \Omega _1&=\left [\frac {1}{\mu _1}\left (\frac {\mathscr {B}_1}{P_1}c_1+\Phi _1\right ) \right ]^{\frac {1}{p_1}},\label {eq.32}\\ \dot {\hat {\Theta }}_1&=\frac {r_1|\varrho _1|^{P_1-1}||\boldsymbol {\Psi }_1\left (\boldsymbol {\mathcal {X}}_1\right )||^2}{4a_1}-\gamma _1\hat {\Theta }_1, \left (\hat {\Theta }_1\left (0\right )>0\right )\label {eq.33}\end {align}


$c_1,\gamma _1\in \boldsymbol {R}^+$


$\mathscr {B}_1=P_1/(p+3)$


\begin {align}\label {eq.34} \mathscr {L}V_1\leq -\frac {c_1\mathscr {B}_1}{P_1}\varrho _1^{p+3}+\frac {\gamma _1}{r_1}\tilde {\Theta }_1\hat {\Theta }_1 +\frac {p_1+1}{p+3}\mu _1 \varrho _2^{p+3}+d_1\end {align}


$d_1=\varepsilon _1+\epsilon _1^{P_1}/P_1 + \left (P_1 - 1\right )/4$


$\textit {Step i}$


$(i=2,\cdots ,n-1)$


$V_i$


\begin {equation}\label {eq.37} V_i=V_{i-1}+\frac {1}{P_i}\varrho _i^{P_i}+\frac {1}{2r_i}\tilde {\Theta }_i^2 ,\quad \left (r_i\in \boldsymbol {R}^+\right ).\end {equation}


\begin {align}\label {eq.38} \mathscr {L}V_i=&-\sum _{j=1}^{i-1}\left (\frac {c_j\mathscr {B}_j}{P_j}\varrho _j^{p+3}-\frac {\gamma _j\tilde \Theta _j\hat \Theta _j}{r_j}-d_j\right ) + \varrho _i^{P_i-1}\bar {f}_i\left (\boldsymbol {\mathcal {X}}_i\right )+\varrho _i^{P_i-1}\left (x_{i+1}^{p_i}-\alpha _i^{p_i}\right )\nonumber \\ &+\varrho _i^{P_i-1}\alpha _i^{p_i}-\Xi _i \varrho _i^{p+3} -\frac {P_i-1}{P_i}\varrho _i^{P_i}+ \frac {P_i-1}{4}-\frac {1}{r_i}\tilde {\Theta }_i\dot {\hat {\Theta }}_i\end {align}


$\bar {f}_2\left (\boldsymbol {\mathcal {X}}_2\right )= F_2\left (\boldsymbol {\bar {x}}_2\right ) +\left [\left (p_1+1\right )\mu _1\varrho _2^{p_2}\right ]/\left (p+3\right )+\Xi _2 \varrho _2^{p_2}+\left (P_2-1\right )\varrho _2/P_2+\left (P_2 - 1\right )\varrho _2^{P_2-3}\|\boldsymbol {H}_2\|^4/4$


$\bar {f}_i\left (\boldsymbol {\mathcal {X}}_i\right ) = F_i\left (\boldsymbol {\bar {x}}_i\right ) + \left [\left (p_{i-1}+1\right )\varrho _i^{p_i}\right ]/$


$\left (p+3\right )+\Xi _i \varrho _i^{p_i} +\left (P_i-1\right )\varrho _i/P_i+\left (P_i - 1\right )\varrho _i^{P_i-3}\|\boldsymbol {H}_i\|^4/4$


$i=3,\cdots ,n-1$


$\boldsymbol {\mathcal {X}}_i=\left [\boldsymbol {\bar {x}}_i,y_r\right ]^{\textup {T}}$


$i=2,\cdots ,n-1$


$\Xi _i$


\begin {align}\varrho _i^{P_i-1}\bar {f}_i\left (\boldsymbol {\mathcal {X}}_i\right ) \le &\frac {|\varrho _i|^{P_i-1}\tilde {\Theta }_i||\boldsymbol {\Psi }_i\left (\boldsymbol {\mathcal {X}}_i\right )||^2}{4a_i}+\varrho _i^{p+3}\Phi _i +\frac {P_i-1}{P_i}\varrho _i^{P_i}+\frac {\Delta _i^{P_i}}{P_i}+\varepsilon _i,\label {eq.39}\\ \varrho _i^{P_i-1}\left (x_{i+1}^{p_i}-\alpha _i^{p_i}\right )\le &\frac {p_i+1}{p+3}\varrho _{i+1}^{p+3}+\Xi _i\varrho _i^{p+3}\label {eq.40}\end {align}


$\varepsilon _i,a_i\in \boldsymbol {R}^+$


$\Phi _i=\left [\left (\left (P_i-1\right )\psi _i\right )/\left (p+3\right )\right ]^{\left (p+3\right )/\left (P_i-1\right )}\left [p_i/\left (P_i-1\right )\varepsilon _i\right ]^{p_i/\left (P_i-1\right )}$


$\psi _i=\sqrt {1+\hat {\Theta }_i^2}||\boldsymbol {\Psi }_i\left (\boldsymbol {\mathcal {X}}_i\right )||^2 /4a_i+a_i$


$\Xi _i=\left (\left (p+2\right )\left (\xi _i|\Omega _i|^{p_i-1}\right )^{\left (p+3\right )/\left (p+2\right )}+\left (P_i-1\right )\xi _i^{\left (p+3\right )/\left (P_i-1\right )}\right )/\left (p+3\right )$


$\xi _i=p_i\left (2^{p_i-2}+2\right )$


$\Omega _i$


$\alpha _i$


$\dot {\hat {\Theta }}_i$


\begin {align}\alpha _i&\triangleq -\Omega _i\varrho _i,\label {eq.41}\\ \Omega _i&=\left (\frac {\mathscr {B}_i}{P_i}c_i+\Phi _i\right )^{\frac {1}{p_i}}\label {eq.42}\\ \dot {\hat {\Theta }}_i&=\frac {r_i|\varrho _n|^{P_i-1}||\boldsymbol {\Psi }_i\left (\boldsymbol {\mathcal {X}}_i\right )||^2}{4a_i}-\gamma _i\hat {\Theta }_i,\left (\hat {\Theta }_i\left (0\right )>0\right ),\label {eq.43}\end {align}


$c_i,\gamma _i\in \boldsymbol {R}^+$


$\mathscr {B}_i=P_i/\left (p+3\right )$


\begin {equation}\label {eq.44} \mathscr {L}V_i\leq -\sum _{j=1}^{i}\left (\frac {c_j\mathscr {B}_j}{P_j}\varrho _j^{p+3}-\frac {\gamma _j}{r_j}\tilde {\Theta }_j\hat {\Theta }_j-d_j\right ) +\frac {p_i+1}{p+3}\varrho _{i+1}^{p+3}\end {equation}


$d_j=\varepsilon _j+\epsilon _j^{P_j}/P_j+ \left (P_j - 1\right )/4$


$\textit {Step n}$


$V_n$


\begin {equation}\label {eq.45} V_n=V_{n-1}+\frac {1}{P_n}\varrho _n^{P_n}+\frac {1}{2r_n}\tilde {\Theta }_n^2,\quad \left (r_n\in \boldsymbol {R}^+\right ).\end {equation}


\begin {align}\label {eq.46} \mathscr {L}V_n\leq &-\sum _{j=1}^{n-1}\left (\frac {c_j\mathscr {B}_j}{P_j}\varrho _j^{p+3}-\frac {\gamma _j\tilde \Theta _j\hat \Theta _j}{r_j} -d_j\right )+\varrho _n^{P_n-1}\left (F_n\left (\boldsymbol {\bar {x}}_n\right )+k_0^{p_n}v^{p_n}+K\left (v\right )\right )\nonumber \\ &+\frac {p_{n-1}+1}{p+3}\varrho _n^{p+3}+\frac {P_n-1}{2}\varrho _n^{P_n-2}\|\boldsymbol {H}_n\|^2-\frac {1}{r_n}\tilde {\Theta }_n\dot {\hat {\Theta }}_n.\end {align}


\begin {align}\label {eq.47} \varrho _n^{P_n-1}K\left (v\right )\leq \frac {\varrho _n^{2P_n-2}}{4}+\bar {K}^2.\end {align}


\begin {align}\label {eq.48} \mathscr {L}V_n\leq &-\sum _{j=1}^{n-1}\left (\frac {c_j\mathscr {B}_j}{P_j}\varrho _j^{p+1}-\frac {\gamma _j\tilde \Theta _j\hat \Theta _j}{r_j}-d_j\right )+\varrho _n^{P_n-1}\bar {f}_n\left (\boldsymbol {\mathcal {X}}_n\right )+\varrho _n^{P_n-1}k_0^{p_n}v^{p_n}+\bar {K}^2\nonumber \\ &-\frac {P_n-1}{P_n}\varrho _n^{P_n} + \frac {P_n - 1}{4}-\frac {1}{r_n}\tilde {\Theta }_n\dot {\hat {\Theta }}_n\end {align}


$\bar {f}_n\left (\boldsymbol {\mathcal {X}}_n\right ) =\left (P_n - 1\right )\varrho _n^{P_n-3}\|\boldsymbol {H}_n\|^4/4 + F_n\left (\boldsymbol {\bar {x}}_n\right )+\left [\left (p_{n-1}+1\right )\varrho _n^{p_n}\right ]/\left (p+3\right )+\left (P_n-1\right )\varrho _n/P_n+ \varrho _n^{P_n-1}/4$


\begin {align}\label {eq.49} \varrho _n^{P_n-1}\bar {f}_n\left (\boldsymbol {\mathcal {X}}_n\right ) \le &\varrho _n^{p+3}\Phi _n+\frac {|\varrho _n|^{P_n-1}\tilde {\Theta }_n||\boldsymbol {\Psi }_n\left (\boldsymbol {\mathcal {X}}_n\right )||^2}{4a_n}+\frac {P_n-1}{P_n}\varrho _n^{P_n}+\frac {\epsilon _n^{P_n}}{P_n}+\varepsilon _n\end {align}


$\varepsilon _n,a_n\in \boldsymbol {R}^+$


$\Phi _n=\left [\left (\left (P_n-1\right )\psi _n\right )/\left (p+3\right )\right ]^{\left (p+3\right )/\left (P_n-1\right )}\left [p_n/\left (P_n-1\right )\varepsilon _n\right ]^{p_n/\left (P_n-1\right )}$


$\psi _n=\sqrt {1+\hat {\Theta }_n^2}||\boldsymbol {\Psi }_n\left (\boldsymbol {\mathcal {X}}_n\right )||^2/4a_n+a_n$


$v$


$\dot {\hat {\Theta }}_n$


\begin {align}v \triangleq &-\Omega _n\varrho _n,\label {eq.50}\\ \Omega _n=&\left (\frac {\mathscr {B}_n}{P_n}c_n+\Phi _n\right )^{\frac {1}{p_n}},\label {eq.51}\\ \dot {\hat {\Theta }}_n=&\frac {r_n|\varrho _n|^{P_n-1}||\boldsymbol {\Psi }_n\left (\boldsymbol {\mathcal {X}}_n\right )||^2}{4a_n}-\gamma _n\hat {\Theta }_n\label {eq.52}\end {align}


$\hat {\Theta }_n\left (0\right )>0$


$c_n,\gamma _n\in \boldsymbol {R}^+$


$\mathscr {B}_n=P_n/\left (p+3\right )$


$-\varrho _j^{p+3}\leq \left (-\varrho _j^{P_j}+\left (p_j-1\right )/\left (p+3\right )\right )/\mathscr {B}_j$


\begin {equation}\label {eq.54} \mathscr {L}V_n\leq -\sum _{j=1}^{n}\left (\frac {c_j}{P_j}\varrho _j^{P_j}- \frac {\gamma _j\tilde \Theta _j\hat \Theta _j}{r_j}-\bar {d}_j\right )+\bar {K}^2\end {equation}


$\bar {d}_j=d_j+c_j\left (p_j-1\right )/P_j\left (p+3\right )$


$\tilde \Theta _j\hat \Theta _j\leq -\tilde \Theta _j^2/2+\Theta _j^2 /2$


\begin {equation}\label {eq.55} \mathscr {L}V_n\leq -\sum _{j=1}^{n}\frac {c_j}{P_j}\varrho _j^{P_j}-\sum _{j=1}^{n}\frac {\gamma _j\tilde \Theta _j^2}{2r_j}+d\end {equation}


$d=\sum _{j=1}^{n}\left (\bar {d}_j+\gamma _j\Theta _j^2/2r_j\right )+\bar {K}^2.$


$e_1\left (0\right ) \in \left (\underline {\mathcal {G}}\left (0\right ),\bar {\mathcal {G}}\left (0\right )\right )$


$e_1$


$V=V_n$


$c = \min \limits _{1\le j\le n}\left \{c_j,2\gamma _j\right \}$


\begin {align}\label {eq.56} \mathscr {L}{V}\leq -cV+d.\end {align}


\begin {equation}\mathbb {E}\left (V\right )\leq V\left (0\right )\exp \left (-ct\right )+\frac {d}{c}. \tag {62} \label {Xeqn22}\end {equation}


$0<\exp \left (-ct\right )\le 1$


\begin {align}\label {eq.57} \mathbb {E}\left (V\right )\leq V\left (0\right )+\frac {d}{c}\end {align}


$V$


$V$


\begin {align}\mathbb {E}\left (|\varrho _i|\right )&\leq \left [P_i\left (V(0)+\frac {d}{c}\right )\right ]^\frac {1}{P_i},\label {eq.58}\\ \mathbb {E}\left (|\tilde {\Theta }_i|\right )&\leq \sqrt {2r_i\left (V(0)+\frac {d}{c}\right )}.\label {eq.59}\end {align}


$\tilde {\Theta }_i$


$\varrho _i$


$\alpha _i$


$v$


$\hat {\Theta }_i$


$x_i$


$e_1\left (0\right )\in \left (\underline {\mathcal {G}}\left (0\right ),{\mathcal {G}}\left (0\right )\right )$


$e_1\left (0\right )\in \left (\mathscr {H}\left (-\vartheta _1\Gamma \left (0\right )\right ), \mathscr {H}\left (\vartheta _2\Gamma \left (0\right )\right )\right )$


$s$


$e_1\left (t\right )\in \left (\mathscr {H}\left (-\vartheta _1\Gamma \left (t\right )\right )/M\left (\sigma \right ), \mathscr {H}\left (\vartheta _2\Gamma \left (t\right )/M\left (\sigma \right )\right )\right )$


$\forall t\in \boldsymbol {R}^+$


$e_1\left (t\right )\in \left (\underline {\mathcal {G}}\left (t\right ),\bar {\mathcal {G}}\left (t\right )\right )$


$\forall t\in \boldsymbol {R}^+$


$\mathscr {H}\left (\cdot \right )$


$\Gamma \left (t\right )$


$e_1\left (t\right )\in \left (\mathscr {H}\left (-\vartheta _1\Gamma _{\textup {T}}\right )/M\left (\sigma \right )\right ), \mathscr {H}\left (\vartheta _2\Gamma _{\textup {T}}/M\left (\sigma \right )\right )$


$\forall t\ge \textup {T}$


$\mathscr {H}\left (-\vartheta _1\Gamma _{\textup {T}}\right )$


$\mathscr {H}\left (\vartheta _2\Gamma _{\textup {T}}\right )$


$e_1\left (t\right )$


$\Gamma _0, \textup {T}, \Gamma _{\textup {T}},\ell $


$\tau $


$\tau $


\begin {equation}\label {eq.67} \begin {cases} \mathrm {d}{x}_1=x_2^3\mathrm {d}{t}+\left (1-\cos x_1\right )\mathrm {d}{w}\\ \mathrm {d}{x}_2=\left (-0.4 x_1^2-0.4 x_2^2\cos x_2 + \textup {S}^3\left (v\right )\right )\mathrm {d}{t} + \left (x_1\sin x_2\right )\mathrm {d}{w}\\ y_1=x_1. \end {cases}\end {equation}


$x_2$


$S(v)$


$y_d=\sin \left (0.5t\right )$


$\textup {T}=5,\Gamma _{\textup {T}}=0.06,\ell =1,\tau =0.2,$


$\rho _1=5,\rho _2=0.5,\bar {v}=2,c_i=40,\gamma _i=3,r_i=0.1,a_i=10$


$i=1,2$


$\left [\hat {\Theta }_1\left (0\right ),\hat {\Theta }_2\left (0\right )\right ]^{\textup {T}}=\left [3,4\right ]^{\textup {T}}$


$\Psi _i =e^{-(\mathcal {Z}_i-5+j)^2/2}, i = 1,2, j = 1, \cdots , 9$


$\Gamma _0=\vartheta _i=1$


$\underline {\mathcal {G}}\left (0\right )\to -\infty $


$\bar {\mathcal {G}}\left (0\right )\to +\infty $


$e_1\left (0\right )=2$


$e_1\left (0\right )=-2$


$e_1\left (t\right )$


$e_1\left (0\right )=1.5,\vartheta _1=0.5,\Gamma _0=\vartheta _2=1$


$e_1\left (0\right )=-1.5,\vartheta _2=0.5,\Gamma _0=\vartheta _1=1$


$e_1\left (0\right )=0.5,\vartheta _1=\vartheta _2=0.5,\Gamma _0=0.9$


$\textup {S}(v) \equiv v$


$e_1\left (0\right ) = 1.5$


$e_1\left (0\right ) = 3$


$e_1\left (0\right ) = -3$


$|v|>\bar {v}$


$|v|\le \bar {v}$


\begin {equation}\label {eq.68} \begin {cases} \dot {x}_1=x_2^{3}\\ \dot {x}_2=\frac {x_1^2}{1+x_2^2}+\textup {S}\left (v\right )\\ y=x_1, \end {cases}\end {equation}


$v$


$x_1$


$x_2$


$y_d=\sin \left (0.5t\right )+0.5\sin t$


$\textup {T}=5,\Gamma _{\textup {T}}=0.06,\ell =1,\tau =0.2,\rho _1=5,\rho _2=0.5,\bar {v}=5,c_i=40,\gamma _i=3,r_i=0.1,a_i=10$


$i=1,2$


$\left [\hat {\Theta }_1\left (0\right ),\hat {\Theta }_2\left (0\right )\right ]^{\textup {T}}=\left [3,4\right ]^{\textup {T}}$


$\Psi _i =e^{-(\mathcal {Z}_i-5+j)^2/2}, i = 1,2, j = 1, \cdots , 9$


$\Gamma _0=\vartheta _i=1$


$e_1\left (0\right )=2$


$e_1\left (0\right )=-2$


$e_1$


$e_1\left (0\right )=1.5,\vartheta _1=0.5,\Gamma _0=\vartheta _2=1$


$e_1\left (0\right )=-1.5,\vartheta _2=0.5,\Gamma _0=\vartheta _1=1$


$e_1\left (0\right )=0.5,\vartheta _1=\vartheta _2=0.5,\Gamma _0=0.9$


$\textup {S}\left (v\right ) \equiv v$


$e_1\left (0\right )=1.5$


$e_1\left (0\right )=3$


$e_1\left (0\right )=-3$


$|v|>\bar {v}$


$|v|\le \bar {v}$
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presented an adaptive stabilization of SHONSs subject to uncertainties. Two control approaches of SHONSs with output constraints 
were obtained in [9,10]. Yao et al. [11] presented a unified fuzzy control approach for SHONSs with or without state constraints. It 
should be pointed out that the transient/steady-state control performance is less considered in the above methods.

With the improvement of users’ requirements, the transient/steady state control performance of the actual system becomes in-
creasingly important. For steady-state performance, many finite, fixed, and prescribed-time stability control (Hereinafter referred to 
as “finite-time control (FTC)") algorithms were proposed [12–18]. The prescribed performance control (PPC) first obtained in [19] 
is an effective method to achieve superior transient control performance, and be widely used in the control design of many kinds of 
systems [20–24]. The core of the above PPC methods (called “traditional PPC (TPPC)”) is to design an exponential-type PPB so that 
the tracking error be always enveloped within the PPB. In order to take into account both tracking accuracy and convergence time, 
many approaches that combine FTC and PPC were proposed [25–28]. The shortcoming of this fusion is that it increases the complexity 
of control design to some extent. To address this challenge, Zhao et al. [29] designed a finite-time PPC (FTPPC) algorithm by con-
structing a novel finite-time PPB (FTPPB), which enabling both convergence time and tracking accuracy to be preset. This approach 
has since been extended to nonlinear systems with diverse structures [30–34], thereby broadening its applicability. Nonetheless, an 
inherent limitation exists in both the FTPPC and TPPC methods is that the initial PPB remains bounded and fixed. This implies that 
when the initial state or reference signal changes, the users have to double check whether the initial PPB can envelope the new initial 
error, and if not, the new PPB needs to be selected again. What is more serious is that the above method is only applicable to the 
case where the initial error information is completely known, and for some specific control systems, the initial error information may 
be partially known, or even completely unknown, then the above methods become useless. Then, the delayed PPC (DPPC) methods 
were proposed to map the initial PPB to infinite boundary by mapping transformation [35–37], which effectively enrich the PPC 
theory when the initial error information is completely unknown. Of course, the limitation of DPPC methods is also obvious, i.e., 
whether the initial error information is known, partially unknown or completely unknown, its initial PPB must always be infinite, 
when the error information is known or partially unknown, it will inevitably lead to the decline of the initial transient performance. 
Then, a unified PPC (UPPC) approach was proposed [38], which can adapt to many cases where the initial error is completely known, 
partially known and completely unknown. Recently, the UPPC method was extended to SISO systems [39–41] and MIMO systems 
[42]. It is noted that the above methods do not consider the influence of performance preset on the control signal, and assume that 
the control signal can be infinite. Meanwhile, the above methods are limited to general feedback systems or deterministic HONSs, 
which are difficult to apply to IS-SHONSs.

Limited by the device load and other factors, the control input of actual control system must have a maximum allowable range. 
If the control signal exceeds the maximum allowable threshold, the device may be damaged and security risks may arise. As a result, 
the existing literatures have presented a lot of PPC approaches for input-saturated nonlinear systems (ISNSs). For instance, two TPPC 
approaches for ISNSs were presented in [43,44], under which an auxiliary system is constructed to dispose the input saturation. Shen 
et al. [45] presented a FTPPC approach of input-saturated 2-DOF helicopter. The above approaches to address input saturation share 
a same goal, i.e., to transform saturated input into manageable normal input through various transformations. Unfortunately, all of 
the above methods deal with input saturation and performance preset in isolation, while ignoring the coupling effect between them, 
which makes the above PPC methods extremely “fragile”. For example, when the performance preset is severe, the control signal will 
increase to exceed the allowable threshold, replacing the control signal with the threshold will cause the error to increase, and even 
exceed the PPB, resulting in singularity. To this end, some fragility-free flexible PPC (FPPC) approaches were presented recently. For 
instance, Yong et al. [46] first established a novel PPB related to input saturation, and the coordination between input security and 
performance preset is realized. The idea was recently extended to ISNSs with different forms [47–53]. The aforementioned methods, 
however, are also only suitable for ISNSs where the initial error information is completely known, and most of them are limited to 
general feedback systems, but cannot be directly applied to input-saturated SHONSs (IS-SHONSs) where the initial error is partially 
known and completely unknown.

Based on the above analysis, this article dedicates to propose a DFPPB-based fuzzy control approach for IS-SHONSs, which can 
not only be used in many cases where the initial error information is completely known, partially known and completely unknown 
without changing the control structure, but also can realize the autonomous coordination between input safety and performance 
preset. The main innovations are summarized below

1) This article first presents a DFPPB-based fuzzy control approach for IS-SHONSs. Distinct from the TPPC approaches [19–24], the 
FTPPC approaches [29–34] for nonlinear systems without considering the input saturation, and the FPPC approaches of ISNSs 
[46–52], the initial PPB of which remains bounded and fixed, meaning that the above approaches can only suit for nonlinear 
systems where the initial error information is completely known. Furthermore, when the initial state or reference signal changes, 
the users have to double check whether the initial PPB can envelope the new initial error, and if not, the new PPB needs to be 
selected again. By designing a rate function (RF)-based PPB, the proposed algorithm can be used in many cases where the initial 
error information is completely known, partially known and completely unknown without changing the control structure, thereby 
significantly enhancing the flexibility and application scope of the algorithm.

2) Unlike the UPPC approaches [38–42], the TPPC approaches [43,44], and FTPPC approach [45], they either ignore the input 
saturation or deal with performance preset and input saturation in isolation, which leads to the hidden trouble of input security or 
the difficulty of coordination between performance presets and input security. By designing an auxiliary system and embedding 
its output into PPB, and a novel DFPPB and a tensile model-based barrier function are constructed, so that the proposed algorithm 
achieves autonomous coordination between performance preset and input security (see Remark 3 for details). In addition, the 
unknown nonlinear functions are approached by the fuzzy logic systems (FLSs). The results show that the designed DFPPB-based 
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fuzzy control algorithm guarantees that all closed-loop signals remain semi-globally bounded in probability (SGBIP); the system 
output is capable of effectively tracking the desired signal, while the tracking error is consistently kept within the DFPPB.

2.  Problem statement and preliminaries

2.1.  Problem formulation

Give an IS-SHONS as follows
⎧

⎪

⎨

⎪

⎩

d𝑥𝑖 =
(

𝑓𝑖
(

𝒙̄𝑖
)

+ 𝑥𝑝𝑖𝑖+1
)

d𝑡 + ℏT𝑖
(

𝒙̄𝑖
)

d𝑤,

d𝑥𝑛 =
(

𝑓𝑛
(

𝒙̄𝑛
)

+ S𝑝𝑛 (𝑣)
)

d𝑡 + ℏT𝑛
(

𝒙̄𝑛
)

d𝑤,
𝑦 = 𝑥1

(1)

where 𝑖 = 1, 2,⋯ , 𝑛 − 1, 𝒙̄𝑖 =
[

𝑥1,⋯ , 𝑥𝑖
]T represents the system state vector, 𝑣 is the designed controller, 𝑦 represents the system output, 

S(𝑣) represents the system input. ℏ𝑖(⋅) and 𝑓𝑖(⋅) represent the function vector and uncertain nonlinear function. 𝑤 ∈ 𝐑𝑟 denotes an 
independent standard Brownian motion, 𝑝𝑖 ∈ 𝐑≥1

𝑜𝑑𝑑 =
{

𝑝 ≥ 1||
|

𝑝 = 𝑞1∕𝑞2
}

, 𝑞𝑗 ∈ 𝑹+(𝑗 = 1, 2) with 𝑖 = 1, 2,⋯ , 𝑛, and

S(𝑣) =

{

𝑣, |𝑣| ≤ 𝑣̄
sign(𝑣)𝑣̄, |𝑣| > 𝑣̄

(2)

where 𝑣̄ is the maximum permissible threshold of the control input.
Utilize the following estimation to deal with the acute angles of S(𝑣)

S(𝑣) = 𝑘1(𝑣) + 𝑘2(𝑣) (3)

with 𝑘1(𝑣) = 𝑣̄ tanh (𝑣∕𝑣̄), 𝑘2(𝑣) = S(𝑣) − 𝑘1(𝑣), and |𝑘2(𝑣)| ≤ 𝑣̄(1 − tanh (1)) = 𝑘̄.
On the basis of the Mean Value Theorem, for ∀𝑣0 ∈ 𝑹, we can obtain

𝑘′1
(

𝑣1
)

=
𝑘1(𝑣) − 𝑘1

(

𝑣0
)

𝑣 − 𝑣0
(4)

where 𝑣1 = 𝑣0 + 𝜆
(

𝑣 − 𝑣0
) with 𝜆 ∈ (0, 1). Let 𝑘0 = 𝑘′1

(

𝑣1
)

, from the expression of 𝑘1(𝑣) it follows that 0 < 𝑘 ≤ 𝑘𝑝𝑛0 < 1, where 𝑘 is an 
unknown constant. By setting 𝑣0 = 0, (3) can be rewritten as

S(𝑣) = 𝑘0𝑣 + 𝑘2(𝑣). (5)

Then, one can further gain
S𝑝𝑛 (𝑣) = 𝑘𝑝𝑛0 𝑣

𝑝𝑛 +𝐾(𝑣) (6)

where 𝐾(𝑣) =
(

𝑘0𝑣 + 𝑘2(𝑣)
)𝑝𝑛 −

(

𝑘0𝑣
)𝑝𝑛 . Since 𝐾(𝑣) → 0 when 𝑣 → ∞, it follows that 𝐾(𝑣) is bounded. Therefore, ∃𝐾̄ > 0, such that 

𝐾(𝑣) ≤ 𝐾̄.
This article aims to construct a novel DFPPB-based fuzzy control algorithm guarantees that all closed-loop signals remain SGBIP; 

the system output is capable of effectively tracking the desired signal, while the tracking error is always kept within the DFPPB.

2.2.  Preliminaries

Definition 1.  For the following stochastic system
d𝑥 = 𝑓 (𝑥)d𝑡 + ℏ(𝑥)d𝑤, (7)

𝑉 (𝑥) is a 𝑪2 positive-definite function, the differential operator ℒ  of 𝑉 (𝑥) is as follows

ℒ𝑉 (𝑥) =
𝜕𝑉 (𝑥)
𝜕𝑥

𝑓 (𝑥) + 1
2
Tr
(

ℏT(𝑥)
𝜕2𝑉 (𝑥)
𝜕𝑥2

ℏ(𝑥)
)

(8)

where Tr(⋅) represents the trace of ⋅.
Lemma 1. [8]: For system (7), assume that there exists a 𝑪2 Lyapunov function (LF) 𝑉 (𝒙): 𝑹𝑛 → 𝑹+, functions ℵ1(⋅), ℵ2(⋅) ∈ ∞, 𝑐, 𝑑 ∈ 𝑹+, 
such that

{

ℵ1(||𝒙||) ≤ 𝑉 (𝒙) ≤ ℵ2(||𝒙||),
ℒ𝑉 (𝒙) ≤ −𝑐𝑉 (𝒙) + 𝑑

then the system almost surely has a unique solution, all the closed-loop signals remain SGBIP, and satifying

𝔼(𝑉 ) ≤ 𝑉 (𝟎) exp (−𝑐𝑡) + 𝑑
𝑐

(9)

where 𝔼(⋅) represents the expectation of ⋅.
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Lemma 2. [8]:A FLS can approximate the unknown nonlinear function 𝑓 ( ) as follows:
𝑓 ( ) = 𝚼T𝚿( ) + 𝜖( ),

(

|𝜖( )| ≤ 𝜖, 𝜖 ∈ 𝑹+) (10)

where  ,𝚼,𝚿( ), 𝜖( ) represents input, weight, the basis function, and error of the FLS, respectively. 𝚿( ) =
[

Ψ1( ),⋯ ,Ψ𝑚( )
]T∕

∑𝑚
𝑖=1 Ψ𝑖( ), 𝑚 > 1 stands for the number of the fuzzy rules. Choose Ψ𝑖( ) as Ψ𝑖( ) =

exp
(

−
(

 − 𝜾𝑖
)T( − 𝜾𝑖

)

∕𝜍𝑖2
)

, 𝑖 = 1,⋯ , 𝑚 with 𝜍𝑖 and 𝜾𝑖 represent the center vector and the spreads of Ψ𝑖( ).

Lemma 3. [9]: For 𝑟 ∈ 𝑹≥1
𝑜𝑑𝑑 , 𝑥, 𝑦 ∈ 𝑹, 𝚤, 𝚥, 𝛾, 𝑎 ∈ 𝑹+, one has

|𝑥𝑟 − 𝑦𝑟| ≤ 𝑟(2𝑟−2 + 2)|𝑥 − 𝑦|
(

|𝑥 − 𝑦|𝑟−1 + 𝑦𝑟−1
)

, (11)

𝑎|𝑥|𝚤|𝑦|𝚥 ≤ 𝛾𝚤
𝚤 + 𝚥

|𝑥|𝚤+𝚥 +
𝚥𝑎

𝚤+𝚥
𝚥

𝚤 + 𝚥
𝛾−

𝚤
𝚥
|𝑦|𝚤+𝚥. (12)

Lemma 4. [9]: For 𝚤 ≥ 0, 𝚥 > 0 and 𝛾 ≥ 1, we have 

𝚤 ≤ 𝚥 +
(

𝚤
𝛾

)𝛾( 𝛾 − 1
𝚥

)𝛾−1
. (13)

3.  Main results

3.1.  Dual flexible performance preset boundary (DFPPB)

Design a RF-based PPB as follows 

ℋ (Γ(𝑡)) =
𝓁Γ(𝑡)

√

1 − Γ2(𝑡)
(14)

where Γ(𝑡) = (

Γ0 − ΓT
)

𝜁 (𝑡) + ΓT, 𝓁,ΓT,Γ0 satisfying 0 < ΓT < Γ0 ≤ 1, 𝓁 > 0. 𝜁 (𝑡) represents the RF, possesses the following charac-
teristics: (1)𝜁 (0) = 1 and 𝜁 (𝑡) ∈ [0, 1),∀𝑡 > 0; (2)𝜁 (𝑖)(𝑡) is piece-wise continuous and bounded with 𝑖 = 0,⋯ , 𝑛. Here, 𝜁 (𝑡) is chosen as 
follows 

𝜁 (𝑡) =

⎧

⎪

⎨

⎪

⎩

(

T−𝑡
T

)𝑛+1
, 0 ≤ 𝑡 < T

0, 𝑡 ≥ T
(15)

where T and 𝑛 stand for the design constant and the order of the system, respectively.
A tensile model-based barrier function is designed as follows 

𝑠 =
𝛽(𝑡)

(

𝜗1 + 𝛽(𝑡)
)(

𝜗2 − 𝛽(𝑡)
) (16)

where 𝜗1, 𝜗2 ∈ (0, 1], 𝛽(𝑡) = 𝜂(𝑡)∕Γ(𝑡), 𝜂(𝑡) =𝑀(𝜎)𝑒1∕
√

𝑀2(𝜎)𝑒21 + 𝓁2 with 𝑒1 = 𝑥1 − 𝑦𝑟, 𝑦𝑟 denotes the desired signal. 𝑀(𝜎) = exp (−𝜏𝜎)
represents the tensile function with 𝜏 ∈ 𝑹+, and 𝜎 denotes the output of the following auxiliary system 

𝜎̇ = −𝜌1𝜎 + 𝜌2
(

𝑏1(𝑡) + 𝑏2(𝑡)
)

, 𝜎(0) = 0 (17)

where 𝜌1, 𝜌2 ∈ 𝑹+, 𝑏1(𝑡) = (sign 𝑣 − 𝑣̄ + 1)(𝑣 − 𝑣̄), 𝑏2(𝑡) = (sign 𝑣 + 𝑣̄ − 1)(𝑣 + 𝑣̄).

Remark 1.  Analysis of the expressions of 𝑏1(𝑡) and 𝑏2(𝑡) reveals that 𝑏1(𝑡) + 𝑏2(𝑡) ≡ 0 if and only if |𝑣| ≤ 𝑣̄, conversely, when |𝑣| > 𝑣̄, 
it holds that 𝑏1(𝑡) + 𝑏2(𝑡) > 0. Additionally, from (17), it can be inferred that 𝜎 = 0 when |𝑣| ≤ 𝑣̄, whereas 𝜎 > 0 when |𝑣| > 𝑣̄. Given 
the formulation of 𝑀(⋅), it follows that 𝑀(𝜎) ∈ (0, 1], and 𝑀(𝜎) = 1 if and only if |𝑣| ≤ 𝑣̄. 
The DFPPB is expressed as 

(

(𝑡), ̄(𝑡)
)

 with

⎧

⎪

⎨

⎪

⎩

(𝑡) = ℋ
(

−𝜗1Γ(𝑡)
)

𝑀(𝜎) ,

̄(𝑡) = ℋ
(

𝜗2Γ(𝑡)
)

𝑀(𝜎)

(18)

where
⎧

⎪

⎨

⎪

⎩

ℋ
(

−𝜗1Γ(𝑡)
)

= −𝓁𝜗1Γ(𝑡)
√

1−
(

𝜗1Γ(𝑡)
)2
,

ℋ
(

𝜗2Γ(𝑡)
)

= 𝓁𝜗2Γ(𝑡)
√

1−
(

𝜗2Γ(𝑡)
)2
.

(19)

From (16), it can be deduced that when 𝛽(0) ∈ (

−𝜗1, 𝜗2
) holds with bounded 𝑠, then 𝛽(𝑡) ∈ (

−𝜗1, 𝜗2
) holds for ∀𝑡 ∈ 𝑹+. Further 

analysis of the expression of 𝛽(𝑡) reveals that 𝛽(𝑡) ∈ (

−𝜗1, 𝜗2
) is equivalent to 𝜂(𝑡) ∈ (

−𝜗1Γ(𝑡), 𝜗2Γ(𝑡)
)

. Given that (14) establishes ℋ (⋅)
as a strictly monotonically increasing function of ⋅, then 𝜂(𝑡) ∈ (

−𝜗1Γ(𝑡), 𝜗2Γ(𝑡)
) is further equivalent to 

ℋ
(

−𝜗1Γ(𝑡)
)

< ℋ (𝜂(𝑡)) < ℋ
(

𝜗2Γ(𝑡)
)

. (20)
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Fig. 1. Diagram of the corresponding DFPPB under different parameters: (a) 𝜗1 = 𝜗2 = Γ0 = 1;(b) 0 < 𝜗1, 𝜗2,Γ0 < 1; (c) 𝜗2 = Γ0 = 1, 0 < 𝜗1 < 1; (d) 
𝜗1 = Γ0 = 1, 0 < 𝜗2 < 1.

Fig. 2. The tracking curves under two different cases.

From (20), one obtains 

ℋ
(

−𝜗1Γ(𝑡)
)

< 𝑀(𝜎)𝑒1 < ℋ
(

𝜗2Γ(𝑡)
)

. (21)

The above analysis demonstrates that if 𝑒1(0) ∈
(

(0), ̄(0)
)

=
(

ℋ
(

−𝜗1Γ(0)
)

,ℋ
(

𝜗2Γ(0)
)) and 𝑠 remains bounded, 𝑒1(𝑡) ∈

(

(𝑡), ̄(𝑡)
)

holds for ∀𝑡 ∈ 𝑹+. This indicates that introducing the barrier function (16) effectively converts the performance constraint control 
into the bounded control for 𝑠.
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Fig. 3. (a)(b) respectively represents the tracking curve and control input curve in case 1;(c)(d) respectively represents the tracking curve and 
control input curve in case 2.

Remark 2.  Distinct from the TPPC approaches [19–24], the FTPPC approaches [29–34] for nonlinear systems without considering 
the input saturation (i.e., 𝑀(𝜎) ≡ 1), and the FPPC approaches of ISNSs [46–52], the initial PPB of which remains bounded and fixed, 
meaning that the above approaches can only suit for nonlinear systems where the initial error information is completely known. 
Nevertheless, the proposed algorithm can be used in many cases where the initial error information is completely known, partially 
known and completely unknown without changing the control structure.

• Let 𝜗1 = 𝜗2 = Γ0 = 1, it follows from (18) and (19) that (0) → −∞ and ̄(0) → +∞, i.e., 𝑒1(0) ∈ (−∞,+∞). It indicates that the 
proposed algorithm is suit for the scenario where the initial error is entirely unknown, as illustrated in Subgraph (a) of Fig. 1;

• Let 𝜗1, 𝜗2,Γ0 ∈ (0, 1), it follows from (18) and (19) that (0) = ℋ
(

−𝜗1Γ(0)
)

=  and ̄(0) = ℋ
(

𝜗2Γ(0)
)

= ̄ ( < 0 and ̄ > 0 denote 
the bounded constants), i.e., 𝑒1(0) ∈

(

, ̄
)

. It indicates that the proposed algorithm is applicable for the scenario where the initial 
error is entirely known, as illustrated in Subgraph (b) of Fig. 1. In fact, in this scenario, the proposed approach reduces to the 
conventional FTPPC approach [29,30];

• Let 𝜗2 = Γ0 = 1, 𝜗1 ∈ (0, 1), it follows from (18) and (19) that (0) = ℋ
(

−𝜗1Γ(0)
)

=  < 0 ( denotes a bounded constant) and ̄(0) →
+∞, i.e., 𝑒1(0) ∈

(

,+∞
)

. It indicates that the proposed method is applicable for any scenario with sign 𝑒1(0) = 1, as illustrated in 
Subgraph (c) of Fig. 1;

• Let 𝜗1 = Γ0 = 1, 0 < 𝜗2 < 1, it follows from (18) and (19) that ̄(0) = ℋ
(

𝜗2Γ(0)
)

= ̄ > 0 (̄ denote a bounded constant) and (0) →
−∞, i.e., 𝑒1(0) ∈

(

−∞, ̄
)

. It indicates that the proposed method is applicable for any scenario with sign 𝑒1(0) = −1, as illustrated 
in Subgraph (d) of Fig. 1.

Remark 3.  Unlike the UPPC approaches [38–42], the TPPC approaches [43,44], and FTPPC approach [45], they either ignore the 
input saturation or deal with performance preset and input saturation in isolation, which leads to the hidden trouble of input security 
or the difficulty of coordination between performance preset and input security. In this article, by designing the auxiliary system (17) 
and embedding its output into PPB, and the novel DFPPB (18) and the tensile model-based barrier function (16) are constructed. 
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Fig. 4. (a) represent the tracking curves in three cases;(b)(c)(d) respectively represent the tracking curves under three cases.

Fig. 5. (a)(b) represent the tracking error curves under the action of TPPC method [19] and the proposed method under three cases, respectively.

According to (17) and Remark 1, one know that the tensile function 𝑀(𝜎) ∈ (0, 1], and 𝑀(𝜎) = 1 if and only if |𝑣| ≤ 𝑣̄. In combination 
with (18), one can further obtain that when |𝑣| > 𝑣̄ (i.e., the control signal exceeds its maximum allowable threshold), the DFPPB will 
adapt to expand to avoid singularity, and when|𝑣| ≤ 𝑣̄, the DFPPB will automatically revert to the original PPB, so that the proposed 
algorithm achieves autonomous coordination between performance preset and input security. The schematic diagram is shown in 
Subgraphs (a)-(d) in Fig. 1.
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Fig. 6. (a)(b) respectively represent the tracking error curve and control input curve under the action of the UPPC method [38]; (c)(d) respectively 
represent the tracking error curve and control input curve under the action of the proposed method.

Fig. 7. The tracking curves under two different cases.

3.2.  DFPPB-Based Fuzzy controller design

From (16), we obtain 

d𝑠 = 𝜇1d𝑒1 + 𝜇2d𝑡 (22)
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Fig. 8. (a)(b) respectively represents the tracking curve and control input curve in case 1;(c)(d) respectively represents the tracking curve and 
control input curve in case 2.

where

𝜇2 =
((

𝜗1𝜗2 + 𝛽2
)

𝑒1
(

𝑀̇ − 𝜂𝑀𝑒1𝑀̇ − Γ̇𝜂
))

∕
(

Γ2
(

𝜗1 + 𝛽
)2(𝜗2 − 𝛽

)2
√

𝑀2𝑒21 + 𝓁2
)

,

𝜇1 =
((

𝜗1𝜗2 + 𝛽2
)

𝑀𝓁2)∕
(

Γ
(

𝜗1 + 𝛽
)2(𝜗2 − 𝛽

)2(𝑀2𝑒21 + 𝓁2)
√

𝑀2𝑒21 + 𝓁2
)

with 𝛽 = 𝛽(𝑡), 𝑀 =𝑀(𝜎(𝑡)), 𝜂 = 𝜂(𝑡), Γ = Γ(𝑡).
Let 𝜚1 = 𝑠, 𝜚𝑖 = 𝑥𝑖 − 𝛼𝑖−1, 𝑖 = 2,⋯ , 𝑛. From (1) and (22), one obtains

⎧

⎪

⎨

⎪

⎩

d𝜚1 = 𝜇1
(

𝐹1
(

𝑥1
)

+ 𝑥𝑝12
)

d𝑡 +𝑯T
1𝑑𝑤,

d𝜚𝑖 =
(

𝐹𝑖
(

𝒙̄𝑖
)

+ 𝑥𝑝𝑖𝑖+1
)

d𝑡 +𝑯T
𝑖 𝑑𝑤,

d𝜚𝑛 =
(

𝐹𝑛
(

𝒙̄𝑛
)

+ S𝑝𝑛 (𝑣)
)

d𝑡 +𝑯T
𝑛𝑑𝑤

(23)

where 𝐹1
(

𝑥1
)

= 𝑓1
(

𝑥1
)

− 𝑦̇𝑑 + 𝜇2∕𝜇1, 𝐹𝑖
(

𝒙̄𝑖
)

= 𝑓𝑖
(

𝒙̄𝑖
)

−ℒ𝛼𝑖−1 with 𝑖 = 2,⋯ , 𝑛, 𝑯T
1 = 𝜇1ℏT1

(

𝑥1
)

,𝑯 𝑖 = ℏ𝑖
(

𝒙̄𝑖
)

−
∑𝑖−1
𝑗=1

(

𝜕𝛼𝑖−1∕𝑥𝑗
)

ℏ𝑗
(

𝒙̄𝑗
)

, 
𝛼𝑖 represents the virtual control signal. Let Θ𝑖 = ||𝚼𝑖||2, 𝑖 = 1, 2,⋯ , 𝑛, 𝚼𝑖 represents the weight vector of FLS, Θ̃𝑖 = Θ𝑖 − Θ̂𝑖, Θ̂𝑖 represents 
the estimate of Θ𝑖, 𝑝 = max

1≤𝑖≤𝑛
{𝑝𝑖}, 𝑃𝑖 = 𝑝 − 𝑝𝑖 + 4.

Step 1: Introduce the LF 𝑉1 as

𝑉1 =
1
𝑃1
𝜚𝑃11 + 1

2𝑟1
Θ̃2
1,

(

𝑟1 ∈ 𝑹+). (24)

From (23)-(24), we obtain 

ℒ𝑉1 =𝜚
𝑃1−1
1 𝜇1

(

𝐹1
(

𝑥1
)

+ 𝑥𝑝12
)

+
𝑃1 − 1

2
𝜚𝑃1−21 ‖𝑯1‖

2 − 1
𝑟1
Θ̃1

̇̂Θ1. (25)
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Fig. 9. (a) represent the tracking curves under three cases; (b)(c)(d) respectively represent the tracking curves under three cases.

From (12), one obtains
𝜚𝑃1−21 ‖𝑯1‖

2 ≤ 1
2
𝜚2𝑃1−41 ‖𝑯1‖

4 + 1
2
. (26)

Substituting (26) into (25), one obtains
ℒ𝑉1 ≤𝜇1𝜚

𝑃1−1
1 (𝑥𝑝12 − 𝛼𝑝11 ) + 𝜇1𝜚

𝑃1−1
1 𝛼𝑝11 + 𝜚𝑃1−11 𝑓1

(

1
)

+
𝑃1 − 1

4
−

Θ̃1
̇̂Θ1

𝑟1
−
𝑃1 − 1
𝑃1

𝜚𝑃11 − 𝜇1Ξ1𝜚
𝑝+3
1 (27)

where 𝑓1
(

1
)

= 𝜇1𝐹1
(

𝑥1
)

+
(

𝑃1 − 1
)

𝜚𝑃1−31 ‖𝑯1‖
4∕4 +

(

𝑃1 − 1
)

𝜚1∕𝑃1 + 𝜇1Ξ1𝜚
𝑝1
1  with 1 =

[

𝑥1, 𝑦𝑟
]T, Ξ1 will be derived in the subsequent 

analysis.
It follows Lemma 2 that 𝑓𝑖

(

 𝑖
) can be effectively approximated via a FLS, i.e., 𝑓𝑖

(

 𝑖
)

= 𝜖𝑖
(

 𝑖
)

+ 𝚼T𝑖 𝚿𝑖
(

 𝑖
)

, where |𝜖𝑖
(

 𝑖
)

| ≤ 𝜖𝑖
with 𝜖𝑖 ∈ 𝑹+.

Given that Lemma 2–3, we obtain

𝜚𝑃1−11 𝑓1
(

1
)

≤
|𝜚1|𝑃1−1Θ̃1||𝚿1

(

1
)

||

2

4𝑎1
+ 𝜚𝑝+31 Φ1 +

𝑃1 − 1
𝑃1

𝜚𝑃11 +
𝜖𝑃11
𝑃1

+ 𝜀1, (28)

𝜚𝑃1−11
(

𝑥𝑝12 − 𝛼𝑝11
)

≤
𝑝1 + 1
𝑝 + 3

𝜚𝑝+32 + Ξ1𝜚
𝑝+3
1 (29)

where 𝑎1, 𝜀1 ∈ 𝑹+, and Φ1 =
[(

𝑃1 − 1
)

𝜓1∕(𝑝 + 3)
](𝑝+3)∕

(

𝑃1−1
)

[

𝑝1∕
(

𝑃1 − 1
)

𝜀1
]𝑝1∕

(

𝑃1−1
)

,𝜓1 =
√

1 + Θ̂2
1||𝚿1

(

1
)

||

2∕4𝑎1 + 𝑎1,Ξ1 =
(

(

𝑃1 − 1
)

𝜉(𝑝+3)∕
(

𝑃1−1
)

1 + (𝑝 + 2)
(

𝜉1|Ω1|
𝑝1−1

)(𝑝+3)∕(𝑝+2)
)

∕(𝑝 + 3), 𝜉1 = 𝑝1
(

2𝑝1−2 + 2
)

, Ω1 will be given later.

Design 𝛼1 and ̇̂Θ1 as
𝛼1 ≜ −Ω1𝜚1, (30)
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Ω1 =
[

1
𝜇1

(

ℬ1
𝑃1

𝑐1 + Φ1

)]
1
𝑝1 , (31)

̇̂Θ1 =
𝑟1|𝜚1|𝑃1−1||𝚿1

(

1
)

||

2

4𝑎1
− 𝛾1Θ̂1,

(

Θ̂1(0) > 0
)

(32)

where 𝑐1, 𝛾1 ∈ 𝑹+, and ℬ1 = 𝑃1∕(𝑝 + 3).
Substituting (28)-(32) to (27), one obtains 

ℒ𝑉1 ≤ −
𝑐1ℬ1
𝑃1

𝜚𝑝+31 +
𝛾1
𝑟1

Θ̃1Θ̂1 +
𝑝1 + 1
𝑝 + 3

𝜇1𝜚
𝑝+3
2 + 𝑑1 (33)

where 𝑑1 = 𝜀1 + 𝜖
𝑃1
1 ∕𝑃1 +

(

𝑃1 − 1
)

∕4.
Step i (𝑖 = 2,⋯ , 𝑛 − 1): Introduce the LF 𝑉𝑖 as

𝑉𝑖 = 𝑉𝑖−1 +
1
𝑃𝑖
𝜚𝑃𝑖𝑖 + 1

2𝑟𝑖
Θ̃2
𝑖 ,

(

𝑟𝑖 ∈ 𝑹+). (34)

From (34), we obtain

ℒ𝑉𝑖 = −
𝑖−1
∑

𝑗=1

(

𝑐𝑗ℬ𝑗

𝑃𝑗
𝜚𝑝+3𝑗 −

𝛾𝑗Θ̃𝑗Θ̂𝑗
𝑟𝑗

− 𝑑𝑗

)

+ 𝜚𝑃𝑖−1𝑖 𝑓𝑖
(

 𝑖
)

+ 𝜚𝑃𝑖−1𝑖

(

𝑥𝑝𝑖𝑖+1 − 𝛼
𝑝𝑖
𝑖

)

+ 𝜚𝑃𝑖−1𝑖 𝛼𝑝𝑖𝑖 − Ξ𝑖𝜚
𝑝+3
𝑖 −

𝑃𝑖 − 1
𝑃𝑖

𝜚𝑃𝑖𝑖 +
𝑃𝑖 − 1

4
− 1
𝑟𝑖
Θ̃𝑖

̇̂Θ𝑖 (35)

where 𝑓2
(

2
)

= 𝐹2
(

𝒙̄2
)

+
[(

𝑝1 + 1
)

𝜇1𝜚
𝑝2
2
]

∕(𝑝 + 3) + Ξ2𝜚
𝑝2
2 +

(

𝑃2 − 1
)

𝜚2∕𝑃2 +
(

𝑃2 − 1
)

𝜚𝑃2−32 ‖𝑯2‖
4∕4, 𝑓𝑖

(

 𝑖
)

= 𝐹𝑖
(

𝒙̄𝑖
)

+
[(

𝑝𝑖−1 + 1
)

𝜚𝑝𝑖𝑖
]

∕
(𝑝 + 3) + Ξ𝑖𝜚

𝑝𝑖
𝑖 +

(

𝑃𝑖 − 1
)

𝜚𝑖∕𝑃𝑖 +
(

𝑃𝑖 − 1
)

𝜚𝑃𝑖−3𝑖 ‖𝑯 𝑖‖
4∕4 with 𝑖 = 3,⋯ , 𝑛 − 1,  𝑖 =

[

𝒙̄𝑖, 𝑦𝑟
]T with 𝑖 = 2,⋯ , 𝑛 − 1, Ξ𝑖 will be derived in the 

subsequent analysis.
Given that Lemma 2–3, one obtains

𝜚𝑃𝑖−1𝑖 𝑓𝑖
(

 𝑖
)

≤
|𝜚𝑖|𝑃𝑖−1Θ̃𝑖||𝚿𝑖

(

 𝑖
)

||

2

4𝑎𝑖
+ 𝜚𝑝+3𝑖 Φ𝑖 +

𝑃𝑖 − 1
𝑃𝑖

𝜚𝑃𝑖𝑖 +
Δ𝑃𝑖𝑖
𝑃𝑖

+ 𝜀𝑖, (36)

𝜚𝑃𝑖−1𝑖

(

𝑥𝑝𝑖𝑖+1 − 𝛼
𝑝𝑖
𝑖

)

≤
𝑝𝑖 + 1
𝑝 + 3

𝜚𝑝+3𝑖+1 + Ξ𝑖𝜚
𝑝+3
𝑖 (37)

where 𝜀𝑖, 𝑎𝑖 ∈ 𝑹+, and Φ𝑖 =
[((

𝑃𝑖 − 1
)

𝜓𝑖
)

∕(𝑝 + 3)
](𝑝+3)∕

(

𝑃𝑖−1
)

[

𝑝𝑖∕
(

𝑃𝑖 − 1
)

𝜀𝑖
]𝑝𝑖∕

(

𝑃𝑖−1
)

, 𝜓𝑖 =
√

1 + Θ̂2
𝑖 ||𝚿𝑖

(

 𝑖
)

||

2∕4𝑎𝑖 + 𝑎𝑖,Ξ𝑖 =
(

(𝑝 + 2)
(

𝜉𝑖|Ω𝑖|𝑝𝑖−1
)(𝑝+3)∕(𝑝+2) +

(

𝑃𝑖 − 1
)

𝜉(𝑝+3)∕
(

𝑃𝑖−1
)

𝑖

)

∕(𝑝 + 3), 𝜉𝑖 = 𝑝𝑖
(

2𝑝𝑖−2 + 2
)

, Ω𝑖 will be given later.

Design 𝛼𝑖 and ̇̂Θ𝑖 as
𝛼𝑖 ≜ −Ω𝑖𝜚𝑖, (38)

Ω𝑖 =
(

ℬ𝑖
𝑃𝑖
𝑐𝑖 + Φ𝑖

)
1
𝑝𝑖

(39)

̇̂Θ𝑖 =
𝑟𝑖|𝜚𝑛|𝑃𝑖−1||𝚿𝑖

(

 𝑖
)

||

2

4𝑎𝑖
− 𝛾𝑖Θ̂𝑖,

(

Θ̂𝑖(0) > 0
)

, (40)

where 𝑐𝑖, 𝛾𝑖 ∈ 𝑹+ and ℬ𝑖 = 𝑃𝑖∕(𝑝 + 3).
Substituting (36)-(40) to (35), one obtains

ℒ𝑉𝑖 ≤ −
𝑖

∑

𝑗=1

( 𝑐𝑗ℬ𝑗

𝑃𝑗
𝜚𝑝+3𝑗 −

𝛾𝑗
𝑟𝑗
Θ̃𝑗Θ̂𝑗 − 𝑑𝑗

)

+
𝑝𝑖 + 1
𝑝 + 3

𝜚𝑝+3𝑖+1 (41)

where 𝑑𝑗 = 𝜀𝑗 + 𝜖
𝑃𝑗
𝑗 ∕𝑃𝑗 +

(

𝑃𝑗 − 1
)

∕4.
Step n: Introduce the LFc 𝑉𝑛 as

𝑉𝑛 = 𝑉𝑛−1 +
1
𝑃𝑛
𝜚𝑃𝑛𝑛 + 1

2𝑟𝑛
Θ̃2
𝑛,

(

𝑟𝑛 ∈ 𝑹+). (42)

From (6) and (42), we obtain

ℒ𝑉𝑛 ≤ −
𝑛−1
∑

𝑗=1

(

𝑐𝑗ℬ𝑗

𝑃𝑗
𝜚𝑝+3𝑗 −

𝛾𝑗Θ̃𝑗Θ̂𝑗
𝑟𝑗

− 𝑑𝑗

)

+ 𝜚𝑃𝑛−1𝑛
(

𝐹𝑛
(

𝒙̄𝑛
)

+ 𝑘𝑝𝑛0 𝑣
𝑝𝑛 +𝐾(𝑣)

)

+
𝑝𝑛−1 + 1
𝑝 + 3

𝜚𝑝+3𝑛 +
𝑃𝑛 − 1

2
𝜚𝑃𝑛−2𝑛 ‖𝑯𝑛‖

2 − 1
𝑟𝑛
Θ̃𝑛

̇̂Θ𝑛. (43)
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From (6), one obtains 

𝜚𝑃𝑛−1𝑛 𝐾(𝑣) ≤
𝜚2𝑃𝑛−2𝑛

4
+ 𝐾̄2. (44)

Then we have

ℒ𝑉𝑛 ≤ −
𝑛−1
∑

𝑗=1

(

𝑐𝑗ℬ𝑗

𝑃𝑗
𝜚𝑝+1𝑗 −

𝛾𝑗Θ̃𝑗Θ̂𝑗
𝑟𝑗

− 𝑑𝑗

)

+ 𝜚𝑃𝑛−1𝑛 𝑓𝑛
(

𝑛
)

+ 𝜚𝑃𝑛−1𝑛 𝑘𝑝𝑛0 𝑣
𝑝𝑛 + 𝐾̄2

−
𝑃𝑛 − 1
𝑃𝑛

𝜚𝑃𝑛𝑛 +
𝑃𝑛 − 1

4
− 1
𝑟𝑛
Θ̃𝑛

̇̂Θ𝑛 (45)

where𝑓𝑛
(

𝑛
)

=
(

𝑃𝑛 − 1
)

𝜚𝑃𝑛−3𝑛 ‖𝑯𝑛‖
4∕4 + 𝐹𝑛

(

𝒙̄𝑛
)

+
[(

𝑝𝑛−1 + 1
)

𝜚𝑝𝑛𝑛
]

∕(𝑝 + 3) +
(

𝑃𝑛 − 1
)

𝜚𝑛∕𝑃𝑛 + 𝜚
𝑃𝑛−1
𝑛 ∕4.

Given that Lemma 2–3, one obtains 

𝜚𝑃𝑛−1𝑛 𝑓𝑛
(

𝑛
)

≤𝜚𝑝+3𝑛 Φ𝑛 +
|𝜚𝑛|𝑃𝑛−1Θ̃𝑛||𝚿𝑛

(

𝑛
)

||

2

4𝑎𝑛
+
𝑃𝑛 − 1
𝑃𝑛

𝜚𝑃𝑛𝑛 +
𝜖𝑃𝑛𝑛
𝑃𝑛

+ 𝜀𝑛 (46)

where 𝜀𝑛, 𝑎𝑛 ∈ 𝑹+, and Φ𝑛 =
[((

𝑃𝑛 − 1
)

𝜓𝑛
)

∕(𝑝 + 3)
](𝑝+3)∕

(

𝑃𝑛−1
)

[

𝑝𝑛∕
(

𝑃𝑛 − 1
)

𝜀𝑛
]𝑝𝑛∕

(

𝑃𝑛−1
)

, 𝜓𝑛 =
√

1 + Θ̂2
𝑛||𝚿𝑛

(

𝑛
)

||

2∕4𝑎𝑛 + 𝑎𝑛.

Design 𝑣 and ̇̂Θ𝑛 as
𝑣 ≜ − Ω𝑛𝜚𝑛, (47)

Ω𝑛 =
(

ℬ𝑛
𝑃𝑛

𝑐𝑛 + Φ𝑛

)
1
𝑝𝑛
, (48)

̇̂Θ𝑛 =
𝑟𝑛|𝜚𝑛|𝑃𝑛−1||𝚿𝑛

(

𝑛
)

||

2

4𝑎𝑛
− 𝛾𝑛Θ̂𝑛 (49)

where Θ̂𝑛(0) > 0, 𝑐𝑛, 𝛾𝑛 ∈ 𝑹+, ℬ𝑛 = 𝑃𝑛∕(𝑝 + 3).
Substituting (44)-(49) to (43), and combining −𝜚𝑝+3𝑗 ≤

(

−𝜚
𝑃𝑗
𝑗 +

(

𝑝𝑗 − 1
)

∕(𝑝 + 3)
)

∕ℬ𝑗 , one obtains

ℒ𝑉𝑛 ≤ −
𝑛
∑

𝑗=1

(

𝑐𝑗
𝑃𝑗
𝜚
𝑃𝑗
𝑗 −

𝛾𝑗Θ̃𝑗Θ̂𝑗
𝑟𝑗

− 𝑑𝑗

)

+ 𝐾̄2 (50)

where 𝑑𝑗 = 𝑑𝑗 + 𝑐𝑗
(

𝑝𝑗 − 1
)

∕𝑃𝑗 (𝑝 + 3).
According to Θ̃𝑗Θ̂𝑗 ≤ −Θ̃2

𝑗∕2 + Θ2
𝑗∕2, one obtains

ℒ𝑉𝑛 ≤ −
𝑛
∑

𝑗=1

𝑐𝑗
𝑃𝑗
𝜚
𝑃𝑗
𝑗 −

𝑛
∑

𝑗=1

𝛾𝑗Θ̃2
𝑗

2𝑟𝑗
+ 𝑑 (51)

where 𝑑 =
∑𝑛
𝑗=1

(

𝑑𝑗 + 𝛾𝑗Θ2
𝑗∕2𝑟𝑗

)

+ 𝐾̄2.

3.3.  Stability analysis

Theorem 1.  For IS-SHONS (1) with 𝑒1(0) ∈
(

(0), ̄(0)
)

, the designed DFPPB-based fuzzy control algorithm guarantees that

1) All closed-loop signals remain SGBIP;
2) the system output is capable of effectively tracking the desired signal, while the tracking error 𝑒1 is consistently kept within the DFPPB.

Proof. 
1) Let 𝑉 = 𝑉𝑛, 𝑐 = min

1≤𝑗≤𝑛

{

𝑐𝑗 , 2𝛾𝑗
}

, we obtain from (51) that 

ℒ𝑉 ≤ −𝑐𝑉 + 𝑑. (52)

Given that (52) and Lemma 1, one obtains
𝔼(𝑉 ) ≤ 𝑉 (0) exp (−𝑐𝑡) + 𝑑

𝑐
. (62)

Since 0 < exp (−𝑐𝑡) ≤ 1, then 

𝔼(𝑉 ) ≤ 𝑉 (0) + 𝑑
𝑐

(53)

meaning that 𝑉  is SGBIP.
Given that the expression of 𝑉 , one obtains

𝔼
(

|𝜚𝑖|
)

≤
[

𝑃𝑖
(

𝑉 (0) + 𝑑
𝑐

)]

1
𝑃𝑖 , (54)
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Fig. 10. (a)(b) represent the tracking error curves under the action of TPPC method [19] and the proposed method under three cases, respectively.

𝔼
(

|Θ̃𝑖|
)

≤
√

2𝑟𝑖
(

𝑉 (0) + 𝑑
𝑐

)

. (55)

From (54)-(55), it can be derived that Θ̃𝑖 and 𝜚𝑖 are SGBIP. According to (30)-(32),(38)-(40) and (47)-(49), one can further derived 
that 𝛼𝑖, 𝑣 and Θ̂𝑖 are SGBIP, then 𝑥𝑖 is also SGBIP. In conclusion, all closed-loop signals are SGBIP.

2) According to (18), one know that 𝑒1(0) ∈
(

(0),(0)
)

 is equivalent to 𝑒1(0) ∈
(

ℋ
(

−𝜗1Γ(0)
)

,ℋ
(

𝜗2Γ(0)
))

. Based on (18)-(22) and 
the boundedness of 𝑠, one know that 𝑒1(𝑡) ∈

(

ℋ
(

−𝜗1Γ(𝑡)
)

∕𝑀(𝜎),ℋ
(

𝜗2Γ(𝑡)∕𝑀(𝜎)
)) holds for ∀𝑡 ∈ 𝑹+, i.e., 𝑒1(𝑡) ∈

(

(𝑡), ̄(𝑡)
)

 holds for 
∀𝑡 ∈ 𝑹+. Based on the properties of ℋ (⋅) and Γ(𝑡), we can further derive that 𝑒1(𝑡) ∈

(

ℋ
(

−𝜗1ΓT
)

∕𝑀(𝜎)
)

,ℋ
(

𝜗2ΓT∕𝑀(𝜎)
) for ∀𝑡 ≥ T, 

where ℋ (

−𝜗1ΓT
) and ℋ (

𝜗2ΓT
) are constants. The aforementioned content indicates that the system output can track the desired 

signal, while 𝑒1(𝑡) consistently remains within the DFPPB. ∎

Remark 4.  It should be pointed out that in order to achieve “dual flexibility”, the proposed control algorithm involves some 
parameters. The selection of parameters usually follows the following rules: 1)The design rules of Γ0,T,ΓT,𝓁 are similar to the 
conventional UPPC method (see [38] for details); 2) 𝜏 is to control the expansion of the constrained boundary when input saturation 
occurs, and the larger the 𝜏, the smaller the expansion. Of course, the pursuit of extreme performance also increases the complexity 
of algorithm design and calculation to a certain extent. In addition, the proposed algorithm only takes input saturation into account, 
but does not consider the global optimality under actuator faults [54,55], which will be an important direction for future efforts. 
Remark 5.  Note that the proposed method is indeed applicable to the situation where the initial error information is completely 
unknown, it seems that this situation is similar to being global boundedness. It should be noted that, on the one hand, the proposed 
method is a unified control algorithm applicable to various types, and when the error information is partially known and fully 
known, it is required that the initial error must be included within the initial boundary; on the other hand, this paper employs FLS 
to approximate the uncertain nonlinear function, based on the approximation rule of FLS, it can only approximate the uncertain 
nonlinear function within a bounded compact set. Therefore, based on the above analysis, the proposed method can only ensure that 
the closed-loop signal remain SGBIP.

4.  Simulation

Example 1.  Consider a IS-SHONS as follows
⎧

⎪

⎨

⎪

⎩

d𝑥1 = 𝑥32d𝑡 +
(

1 − cos 𝑥1
)

d𝑤
d𝑥2 =

(

−0.4𝑥21 − 0.4𝑥22 cos 𝑥2 + S
3(𝑣)

)

d𝑡 +
(

𝑥1 sin 𝑥2
)

d𝑤
𝑦1 = 𝑥1.

(56)

Obviously, the exponent of 𝑥2 of the first sub-expression and the exponent of 𝑆(𝑣) of the second sub-expression are both 3, which 
is fundamentally different from the exponent of 1 in traditional feedback systems. Let 𝑦𝑑 = sin (0.5𝑡), T = 5,ΓT = 0.06,𝓁 = 1, 𝜏 = 0.2,

𝜌1 = 5, 𝜌2 = 0.5, 𝑣̄ = 2, 𝑐𝑖 = 40, 𝛾𝑖 = 3, 𝑟𝑖 = 0.1, 𝑎𝑖 = 10 with 𝑖 = 1, 2, 
[

Θ̂1(0), Θ̂2(0)
]T

= [3, 4]T. Choose the fuzzy membership functions as: 
Ψ𝑖 = 𝑒−(𝑖−5+𝑗)2∕2, 𝑖 = 1, 2, 𝑗 = 1,⋯ , 9. Let Γ0 = 𝜗𝑖 = 1, based on Remark 2, on know that the initial PPB is infinite, i.e., (0) → −∞ and 
̄(0) → +∞, which indicates that the proposed algorithm is applicable for the case where the initial error is entirely unknown. To 
validate this, two initial errors were selected: Case 1 with 𝑒1(0) = 2, Case 2 with 𝑒1(0) = −2. The corresponding tracking performances, 
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Fig. 11. (a)(b) respectively represent the tracking error curve and control input curve under the action of the UPPC method [38]; (c)(d) respectively 
represent the tracking error curve and control input curve under the action of the proposed method.

tracking errors, and control inputs for both cases are illustrated in Fig. 2 and Fig. 3, respectively. The results validate that the proposed 
method ensures that the system output is capable of effectively tracking the desired signal, while the tracking error 𝑒1(𝑡) is consistently 
within the DFPPB.

To verify the flexibility of the proposed method, three different sets of parameters were selected: Case 1: 𝑒1(0) = 1.5, 𝜗1 = 0.5,Γ0 =
𝜗2 = 1, Case 2: 𝑒1(0) = −1.5, 𝜗2 = 0.5,Γ0 = 𝜗1 = 1, Case 3: 𝑒1(0) = 0.5, 𝜗1 = 𝜗2 = 0.5,Γ0 = 0.9. The tracking curves for all three cases are 
shown in Subgraph (a) of Fig. 4, with their individual responses depicted in Subgraphs (b)(c)(d) of Fig. 4. The results demonstrate 
that the proposed method can accommodate various cases through appropriate parameter adjustment.

To demonstrate the superiority of the proposed method, the comparison is conducted with the TPPC method [19] without con-
sidering the input saturation, i.e., S(𝑣) ≡ 𝑣. Subgraphs (a) and (b) in Fig. 5 illustrate the tracking error curves of the TPPC and the 
proposed methods, respectively. It is evident that the TPPC method requires the initial PPB to be bounded, consequently, it is only 
applicable when the initial error falls within the PPB (e.g., 𝑒1(0) = 1.5). However, for cases where the initial error exceeds the bound-
aries (e.g., 𝑒1(0) = 3 and 𝑒1(0) = −3), the TPPC method becomes inapplicable. In contrast, the proposed algorithm demonstrates the 
capability to effectively handle all three different initial error scenarios.

In addition, the comparison is conducted between the proposed method and the UPPC method [38]. Although the UPPC method 
can accommodate different initial error cases through parameter adjustment, it fails to address the prevalent input saturation issue in 
practical systems. As shown in Subgraphs (a) and (b) of Fig. 5, when the control input exceeds the saturation threshold, the tracking 
performance will diminish and even violate the PPB, and resulting in simulation failure. In contrast, this paper innovatively establishes 
an intrinsic connection between performance constraints and input saturation (see Remark 3 for details), enabling adaptive adjustment 
of PPB. Specifically, Subgraphs (c) and (d) of Fig. 5 demonstrate that the DFPPB adaptively expands when |𝑣| > 𝑣̄ to mitigate the impact 
of input saturation on tracking performance, while the DFPPB can adaptively revert to the original PPB when |𝑣| ≤ 𝑣̄. Consequently, 
the proposed algorithm achieves autonomous coordination between performance preset and input security (Fig. 6).
Remark 6.  It is worth noting that some DPPC methods [35–37,55] utilizing shifting transformation and finite-time constraining 
function can also achieve the pre-set tracking performance without the conservative initial limitations, however, the limitation of 
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DPPC methods is also obvious, i.e., whether the initial error information is known, partially unknown or completely unknown, its 
initial PPB must always be infinite, when the error information is known or partially unknown, it will inevitably lead to the decline 
of the initial transient performance. Compared with them, the advantages of the proposed method are that it can not only be used 
in many cases where the initial error information is completely known, partially known and completely unknown without changing 
the control structure, but also achieve autonomous coordination between performance preset and input security. 
Example 2.  A simplified boiler unit model [9] is considered as follows

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇1 = 𝑥32
𝑥̇2 =

𝑥21
1+𝑥22

+ S(𝑣)

𝑦 = 𝑥1,

(57)

where 𝑣 denotes the control valve position, 𝑥1 denotes the drum pressure, 𝑥2 denotes the reheater pressure. The simplified boiler 
unit model is clearly a typical example of the high-order system. Let 𝑦𝑑 = sin (0.5𝑡) + 0.5 sin 𝑡, T = 5,ΓT = 0.06,𝓁 = 1, 𝜏 = 0.2, 𝜌1 =

5, 𝜌2 = 0.5, 𝑣̄ = 5, 𝑐𝑖 = 40, 𝛾𝑖 = 3, 𝑟𝑖 = 0.1, 𝑎𝑖 = 10 with 𝑖 = 1, 2, 
[

Θ̂1(0), Θ̂2(0)
]T

= [3, 4]T. Choose the fuzzy membership functions as: 
Ψ𝑖 = 𝑒−(𝑖−5+𝑗)2∕2, 𝑖 = 1, 2, 𝑗 = 1,⋯ , 9. Let Γ0 = 𝜗𝑖 = 1, and select two initial errors: Case 1: 𝑒1(0) = 2, Case 2: 𝑒1(0) = −2. The track-
ing curves, tracking error curves, and control input curves for the two cases are respectively given in Fig. 7 and Fig. 8. It means that 
the system output is capable of tracking the desired signal, and the tracking error 𝑒1 is consistently retained within the DFPPB. 

To verify the flexibility of the proposed method, three different sets of parameters were selected: Case 1: 𝑒1(0) = 1.5, 𝜗1 = 0.5,Γ0 =
𝜗2 = 1, Case 2: 𝑒1(0) = −1.5, 𝜗2 = 0.5,Γ0 = 𝜗1 = 1, Case 3: 𝑒1(0) = 0.5, 𝜗1 = 𝜗2 = 0.5,Γ0 = 0.9. The tracking curves for all three cases are 
shown in Subgraph (a) of Fig. 9, with their individual responses depicted in Subgraphs (b)(c)(d) of Fig. 9. The results demonstrate 
that the proposed method can accommodate various cases through appropriate parameter adjustment.

The comparison is conducted with the TPPC method [19] without considering the input saturation, i.e., S(𝑣) ≡ 𝑣. Subgraphs (a) 
and (b) in Fig. 10 illustrate the tracking error curves of the TPPC and the proposed methods, respectively. As shown in subgraph 
(a) of Fig. 10, the TPPC method is solely suitable for initial errors confined within the PPB (like 𝑒1(0) = 1.5), but not for cases with 
𝑒1(0) = 3 and 𝑒1(0) = −3. Conversely, the proposed algorithm is well-suited for the three different initial errors.

The comparison is also conducted between the proposed method and the UPPC method [38]. As shown in Subgraph (a)(b) of 
Fig. 11, when the control input exceeds the saturation threshold, the tracking performance will diminish and even violate the PPB, 
resulting in simulation failure. However, From subgraph (c)(d) of Fig. 11, one know that the DFPPB adaptively expands when |𝑣| > 𝑣̄
to mitigate the impact of input saturation on tracking performance, while the DFPPB can adaptively revert to the original PPB when 
|𝑣| ≤ 𝑣̄.

5.  Conclusion

A DFPPB-based fuzzy control approach for IS-SHONSs is first present in this article. By designing a RF-based PPB, the proposed 
algorithm be used in many cases where the initial error information is completely known, partially known and completely unknown 
without changing the control structure. In addition, by designing an auxiliary system and embedding its output into PPB, and a novel 
DFPPB and a tensile model-based barrier function are constructed, so that the proposed algorithm achieves autonomous coordination 
between performance preset and input security. It is worth noting that the proposed algorithm does not take into account global 
optimality and actuator faults [54,55], the future research will primarily concentrate on the DFPPB-based reinforcement learning 
control and fault-tolerant control for IS-SHONSs.
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